ASTM-E2859 Historical Revision Information
Standard Guide for Size Measurement of Nanoparticles Using Atomic Force Microscopy

ASTM-E2859 - 2011 R23 EDITION - CURRENT
Show Complete Document History

Document Center Inc. is an authorized dealer of ASTM standards.
The following bibliographic material is provided to assist you with your purchasing decision:

Standard Guide for Size Measurement of Nanoparticles Using Atomic Force Microscopy
ORDER

Price:

$69.00        

Scope

1.1 The purpose of this document is to provide guidance on the quantitative application of atomic force microscopy (AFM) to determine the size of nanoparticles deposited in dry form on flat substrates using height (z-displacement) measurement. Unlike electron microscopy, which provides a two-dimensional projection or a two-dimensional image of a sample, AFM provides a three-dimensional surface profile. While the lateral dimensions are influenced by the shape of the probe, displacement measurements can provide the height of nanoparticles with a high degree of accuracy and precision. If the particles are assumed to be spherical, the height measurement corresponds to the diameter of the particle. In this guide, procedures are described for dispersing gold nanoparticles on various surfaces such that they are suitable for imaging and height measurement via intermittent contact mode AFM. Generic procedures for AFM calibration and operation to make such measurements are then discussed. Finally, procedures for data analysis and reporting are addressed. The nanoparticles used to exemplify these procedures are National Institute of Standards and Technology (NIST) reference materials containing citrate-stabilized negatively charged gold nanoparticles in an aqueous solution.

1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Significance and Use

As AFM measurement technology has matured and proliferated, the technique has been widely adopted by the nanotechnology research and development community to the extent that it is now considered an indispensible tool for visualizing and quantifying structures on the nanoscale. Whether used as a stand-alone method or to complement other dimensional measurement methods, AFM is now a firmly established component of the nanoparticle measurement tool box. International standards for AFM-based determination of nanoparticle size are nonexistent as of the drafting of this guide. Therefore, this standard aims to provide practical and metrological guidance for the application of AFM to measure the size of substrate-supported nanoparticles based on maximum displacement as the probe is rastered across the particle surface to create a line profile.

Keywords

atomic force microscope; AFM; calibration; cantilever deflection; contact mode; functionalized substrate; gold nanoparticle; height displacement; intermittent mode; nanoparticle; nanoscale measurement; particle deposition; particle size; tapping mode; ICS Number Code 07.120 (Nanotechnologies)

To find similar documents by ASTM Volume:

14.02 (General Test Methods; Forensic Psychophysiology; Forensic Sciences; Terminology; Conformity Assessment; Statistical Methods; Nanotechnology; Forensic Engineering; Manufacture of Pharmaceutical Products)

To find similar documents by classification:

07.030 (Physics. Chemistry This group includes standards in the field of physics and chemistry as natural sciences Applied physics, see 17 Chemical technology, see 71)

07.120 (Nanotechnologies)

This document comes with our free Notification Service, good for the life of the document.

This document is available in either Paper or PDF format.

Document Number

ASTM-E2859-11R23

Revision Level

2011 R23 EDITION

Status

Current

Modification Type

New

Publication Date

Sept. 15, 2023

Document Type

Guide

Page Count

9 pages

Committee Number

E56.02