ASTM-C1662 Standard Practice for Measurement of the Glass Dissolution Rate Using the Single-Pass Flow-Through Test Method

ASTM-C1662 - 2018 EDITION - CURRENT
Show Complete Document History

Document Center Inc. is an authorized dealer of ASTM standards.
The following bibliographic material is provided to assist you with your purchasing decision:

Standard Practice for Measurement of the Glass Dissolution Rate Using the Single-Pass Flow-Through Test Method
ORDER

Price:

$69.00        


Want this as a site license?

Changes from the previous issue

A redline edition is available for this document, with all changes visible. Ask Document Center Inc. for more information.

Scope

1.1 This practice describes a single-pass flow-through (SPFT) test method that can be used to measure the dissolution rate of a homogeneous silicate glass, including nuclear waste glasses, in various test solutions at temperatures less than 100°C. Tests may be conducted under conditions in which the effects from dissolved species on the dissolution rate are minimized to measure the forward dissolution rate at specific values of temperature and pH, or to measure the dependence of the dissolution rate on the concentrations of various solute species.

1.2 Tests are conducted by pumping solutions in either a continuous or pulsed flow mode through a reaction cell that contains the test specimen. Tests must be conducted at several solution flow rates to evaluate the effect of the flow rate on the glass dissolution rate.

1.3 This practice excludes static test methods in which flow is simulated by manually removing solution from the reaction cell and replacing it with fresh solution.

1.4 Tests may be conducted with demineralized water, chemical solutions (such as pH buffer solutions, simulated groundwater solutions, and brines), or actual groundwater.

1.5 Tests may be conducted with crushed glass of a known size fraction or monolithic specimens having known geometric surface area. The reacted solids may be examined to provide additional information regarding the behavior of the material in the test and the reaction mechanism.

1.6 Tests may be conducted with glasses containing radionuclides. However, this test method does not address safety issues for radioactive samples.

1.7 Data from these tests can be used to determine the values of kinetic model parameters needed to calculate the glass corrosion behavior in a disposal system over long periods (for example, see Practice C1174).

1.8 This practice must be performed in accordance with all quality assurance requirements for acceptance of the data.

1.9 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Significance and Use

5.1 This practice provides a prescriptive description of the design of a SPFT test apparatus and identifies aspects of the performance of SPFT tests and interpretation of test results that must be addressed by the experimenter to provide confidence in the measured dissolution rate.

5.2 The SPFT test method described in this practice can be used to characterize various aspects of glass corrosion behavior that can be utilized in a mechanistic model for calculating long-term behavior of a nuclear waste glass.

5.3 Depending on the values of test parameters that are used, the results of SPFT tests can be used to measure the intrinsic dissolution rate of a glass, the temperature and pH dependencies of the rate, and the effects of various dissolved species on the dissolution rate.

5.4 The reacted sample recovered from a test may be examined with surface analytical techniques, such as scanning electron microscopy, to further characterize the corrosion behavior. Such examinations may provide evidence regarding whether the glass is dissolving stoichiometrically, if particular leached layers and secondary phases were formed on the specimen surface, and so forth. These occurrences may impact the accuracy of the glass dissolution rate that is measured using this method. This practice does not address the analysis of solid reaction materials.

Keywords

glass dissolution rate;; ICS Number Code 81.040.30 (Glass products)

To find similar documents by ASTM Volume:

12.01 (Nuclear Energy (I))

To find similar documents by classification:

81.040.30 (Glass products Bottles, pots, jars, see 55.100 Laboratory glassware, see 71.040.20)

This document comes with our free Notification Service, good for the life of the document.

This document is available in either Paper or PDF format.

Document Number

ASTM-C1662-18

Revision Level

2018 EDITION

Status

Current

Modification Type

Revision

Publication Date

Sept. 1, 2018

Document Type

Practice

Page Count

12 pages

Committee Number

C26.13