ASTM-D7675 Standard Test Method for Determination of Total Hydrocarbons in Hydrogen by FID-Based Total Hydrocarbon (THC) Analyzer

ASTM-D7675 - 2022 EDITION - CURRENT
Show Complete Document History

Document Center Inc. is an authorized dealer of ASTM standards.
The following bibliographic material is provided to assist you with your purchasing decision:

Standard Test Method for Determination of Total Hydrocarbons in Hydrogen by FID-Based Total Hydrocarbon (THC) Analyzer
ORDER

Price:

$63.00        


Want this as a site license?

Scope

1.1 This test method describes a procedure for total hydrocarbons (THC’s) measurement in hydrogen intended as a fuel on a methane (C1) basis. The determination of THC on a C1 basis is an analytical technique where all the hydrocarbons are assumed to have the same response as methane (CH4). Sensitivity from 0.1 parts per million by volume (ppm(v), µmol/mol) up to 1000 ppm(v) concentration is achievable. Higher concentrations can be analyzed using appropriate dilution techniques. This test method can be applied to other gaseous samples requiring analysis of trace constituents provided an assessment of potential interferences has been accomplished.

1.2 This test method is a Flame Ionization Detector-based (FID-based) hydrocarbon analysis method without the use of separation columns. Therefore, this method does not provide speciation of individual hydrocarbons. Several varieties of instruments are manufactured and can be used for this method.

1.2.1 This method provides a measure of THC “as CH4,” because all hydrocarbon species are quantified the same as CH4 response, which is the sole species used for calibration. Magnitude of the FID response to an atom of carbon is dependent on the chemical environment of this atom in the molecule. This method provides the THC result as if all carbon atoms are from aliphatic, aromatic, olefinic, or acetylenic compounds, where the detector response caused by these atoms is approximately relative to the number of carbon atoms present in the molecule. Other types of molecules, including those containing oxygen or chlorine atoms, will respond differently and usually much lower than the corresponding aliphatic hydrocarbon. Therefore, other methods (Test Methods D7653, D7892, or equivalent) must be utilized to determine the exact constituents of the THC response determined by this method.

1.3 The proper handling of compressed gas cylinders containing air, nitrogen, hydrogen, or helium requires the use of gas regulators to preclude over-pressurization of any instrument component

1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Significance and Use

5.1 Low operating temperature fuel cells such as proton exchange membrane fuel cells (PEM-FC) require high purity hydrogen for maximum material performance and lifetime. Analysis to 0.1 part per million (ppm(v)) concentration of THCs (measured as CH4) in hydrogen is necessary for ensuring a feed gas of sufficient purity to satisfy fuel cell system needs as defined in SAE J2719 or as specified in regulatory codes.

5.2 Dynamic dilution techniques using highly accurate mass flow controllers can be used with test samples that have THC content exceeding the upper limit of the instrument’s linear range, without the need to recalibrate the instrument using higher levels of calibration standards. The sample can be diluted with a high purity grade of hydrogen (99.999 %, so long as it contains < 0.1 ppm(v) THCs) to achieve a result of the THC content by applying the appropriate dilution factor to the result. Samples that contain THC concentrations greater than 1000 ppm(v) may be determined, although results will likey be achieved with reduced precision and should be analyzed by the dilution method.

5.3 Although not intended for application to gases other than hydrogen, techniques within this test method can be applied to other non-hydrocarbon gas samples requiring THC content determination. This can be achieved by using a zero gas and a calibration gas that consist of the same background gas as the actual sample. As an example, for the THC determination of nitrogen, the instrument zero point must be determined with a high purity grade of nitrogen (99.999 % and < 0.1 ppm(v) THCs) and the instrument calibration must be done with a certified standard of CH4 in nitrogen in the appropriate range. This will correct for any interferences caused by the background gas.

Keywords

flame ionization detector (FID); total carbon analysis (TCA); total hydrocarbon (THC);

To find similar documents by ASTM Volume:

05.06 (Gaseous Fuels; Coal and Coke)

To find similar documents by classification:

27.075 (Hydrogen technologies Industrial application of gases, see 71.100.20)

This document comes with our free Notification Service, good for the life of the document.

This document is available in either Paper or PDF format.

Document Number

ASTM-D7675-22

Revision Level

2022 EDITION

Status

Current

Modification Type

Revision

Publication Date

June 28, 2022

Document Type

Test Method

Page Count

6 pages

Committee Number

D03.14