ASTM-E1006 Standard Practice for Analysis and Interpretation of Physics Dosimetry Results from Test Reactor Experiments

ASTM-E1006 - 2021 EDITION - CURRENT
Show Complete Document History

Document Center Inc. is an authorized dealer of ASTM standards.
The following bibliographic material is provided to assist you with your purchasing decision:

Standard Practice for Analysis and Interpretation of Physics Dosimetry Results from Test Reactor Experiments
ORDER

Price:

$63.00        


Want this as a site license?

Scope

1.1 This practice covers the methodology summarized in Annex A1 to be used in the analysis and interpretation of physics-dosimetry results from test reactors.

1.2 This practice relies on, and ties together, the application of several supporting ASTM standard practices, guides, and methods.

1.3 Support subject areas that are discussed include reactor physics calculations, dosimeter selection and analysis, exposure units, and neutron spectrum adjustment methods.

1.4 This practice is directed towards the development and application of physics-dosimetry-metallurgical data obtained from test reactor irradiation experiments that are performed in support of the operation, licensing, and regulation of LWR nuclear power plants. It specifically addresses the physics-dosimetry aspects of the problem. Procedures related to the analysis, interpretation, and application of both test and power reactor physics-dosimetry-metallurgy results are addressed in Practices E185, E853, and E1035, Guides E900, E2005, E2006 and Test Method E646. See also E706.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Significance and Use

3.1 The mechanical properties of steels and other metals are altered by exposure to neutron radiation. These property changes are assumed to be a function of chemical composition, metallurgical condition, temperature, fluence (perhaps also fluence rate), and neutron spectrum. The influence of these variables is not completely understood. The functional dependency between property changes and neutron radiation is summarized in the form of damage exposure parameters that are weighted integrals over the neutron fluence spectrum.

3.2 The evaluation of neutron radiation effects on pressure vessel steels and the determination of safety limits requires the knowledge of uncertainties in the prediction of radiation exposure parameters (for example, dpa (Practice E693), neutron fluence greater than 1.0 MeV, neutron fluence greater than 0.1 MeV, thermal neutron fluence, etc.). This practice describes recommended procedures and data for determining these exposure parameters (and the associated uncertainties) for test reactor experiments.

3.3 The nuclear industry draws much of its information from databases that come from test reactor experiments. Therefore, it is essential that reliable databases are obtained from test reactors to assess safety issues in Light Water Reactor (LWR) nuclear power plants.

Keywords

discrete ordinates; dosimetry; Monte Carlo; neutron exposure parameters; radiation transport; test reactor ;

To find similar documents by ASTM Volume:

12.02 (Nuclear (II), Solar, and Geothermal Energy)

To find similar documents by classification:

17.240 (Radiation measurements Including dosimetry Radiation protection, see 13.280)

This document comes with our free Notification Service, good for the life of the document.

This document is available in either Paper or PDF format.

Document Number

ASTM-E1006-21

Revision Level

2021 EDITION

Status

Current

Modification Type

Revision

Publication Date

March 4, 2021

Document Type

Practice

Page Count

7 pages

Committee Number

E10.05