ASTM-E399 Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials

ASTM-E399 - 2017 EDITION - CURRENT
Show Complete Document History

Document Center Inc. is an authorized dealer of ASTM standards.
The following bibliographic material is provided to assist you with your purchasing decision:

Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials
ORDER

Price:

$69.00        

Changes from the previous issue

A redline edition is available for this document, with all changes visible. Ask Document Center Inc. for more information.

Scope

1.1 This test method covers the determination of fracture toughness (KIc) of metallic materials under predominantly linear-elastic, plane-strain conditions using fatigue precracked specimens having a thickness of 1.6 mm (0.063 in.) or greater2 subjected to slowly, or in special (elective) cases rapidly, increasing crack-displacement force. Details of test apparatus, specimen configuration, and experimental procedure are given in the Annexes.

Note 1: Plane-strain fracture toughness tests of thinner materials that are sufficiently brittle (see 7.1) can be made using other types of specimens (1).3 There is no standard test method for such thin materials.

1.2 This test method is divided into two parts. The first part gives general recommendations and requirements for KIc testing. The second part consists of Annexes that give specific information on displacement gage and loading fixture design, special requirements for individual specimen configurations, and detailed procedures for fatigue precracking. Additional annexes are provided that give specific procedures for beryllium and rapid-force testing.

1.3 General information and requirements common to all specimen configurations:

 

Section

Referenced Documents

2

Terminology

3

 Stress-Intensity Factor

3.1.1

 Plane-Strain Fracture Toughness

3.1.2

 Crack Plane Orientation

3.1.4

Summary of Test Method

4

Significance and Use

5

 Significance

5.1

 Precautions

5.1.1 – 5.1.5

 Practical Applications

5.2

Apparatus (see also 1.4)

6

 Tension Machine

6.1

 Fatigue Machine

6.2

 Loading Fixtures

6.3

 Displacement Gage, Measurement

6.4

Specimen Size, Configurations, and Preparation (see also 1.5)

7

 Specimen Size Estimates

7.1

 Standard and Alternative Specimen Configurations

7.2

 Fatigue Crack Starter Notches

7.3.1

 Fatigue Precracking (see also 1.6)

7.3.2

 Crack Extension Beyond Starter Notch

7.3.2.2

General Procedure

8

 Specimen Measurements

 

  Thickness

8.2.1

  Width

8.2.2

  Crack Size

8.2.3

  Crack Plane Angle

8.2.4

 Specimen Testing

 

  Loading Rate

8.3

  Test Record

8.4

Calculation and Interpretation of Results

9

 Test Record Analysis

9.1

Pmax/PQ Validity Requirement

9.1.3

 Specimen Size Validity Requirements

9.1.4

Reporting

10

Precision and Bias

11

1.4 Specific requirements related to test apparatus:

Double-Cantilever Displacement Gage

Annex A1

Testing Fixtures

Annex A2

Bend Specimen Loading Fixture

Annex A2.1

Compact Specimen Loading Clevis

Annex A2.2

1.5 Specific requirements related to individual specimen configurations:

Bend Specimen SE(B)

Annex A3

Compact Specimen C(T)

Annex A4

Disk-Shaped Compact Specimen DC(T)

Annex A5

Arc-Shaped Tension Specimen A(T)

Annex A6

Arc-Shaped Bend Specimen A(B)

Annex A7

1.6 Specific requirements related to special test procedures:

Fatigue Precracking KIc Specimens

Annex A8

Hot-Pressed Beryllium Testing

Annex A9

Rapid-Force Testing

Annex A10

1.7 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Keywords

ICS Number Code 77.040.10 (Mechanical testing of metals)

To find similar documents by ASTM Volume:

03.01 (Metals -- Mechanical Testing; Elevated and Low-Temperature Tests; Metallography)

To find similar documents by classification:

77.040.10 (Mechanical testing of metals Mechanical testing in general, see 19.060 Mechanical testing of welded joints, see 25.160.40)

This document comes with our free Notification Service, good for the life of the document.

This document is available in either Paper or PDF format.

Document Number

ASTM-E399-17

Revision Level

2017 EDITION

Status

Current

Modification Type

Revision

Publication Date

Nov. 15, 2017

Document Type

Test Method

Page Count

34 pages

Committee Number

E08.07