ASTM-F723 Standard Practice for Conversion Between Resistivity and Dopant Density for Boron-Doped, Phosphorus-Doped, and Arsenic-Doped Silicon (Withdrawn 2003)

ASTM-F723 - 1999 EDITION - CANCELLED
Show Complete Document History

Document Center Inc. is an authorized dealer of ASTM standards.
The following bibliographic material is provided to assist you with your purchasing decision:

Standard Practice for Conversion Between Resistivity and Dopant Density for Boron-Doped, Phosphorus-Doped, and Arsenic-Doped Silicon (Withdrawn 2003)

Scope

This standard was transferred to SEMI (www.semi.org) May 2003

1.1 This practice describes a conversion between dopant density and resistivity for boron- and phosphorus-doped single crystal silicon at 23°C. The conversions are based primarily on the data of Thurber et al (1,2,3) taken on bulk single crystal silicon having dopant density values in the range from 3 X 10 cm to 1 X 10 cm for phosphorus-doped silicon and in the range from 10 cm to 1 X 10 cm for boron-doped silicon. The phosphorus data base was supplemented in the following manner:two bulk specimen data points of Esaki and Miyahara (4) and one diffused specimen data point of Fair and Tsai (5) were used to extend the data base above 10 cm , and an imaginary point was added at 10 cm to improve the quality of the conversion for low dopant density values.

1.2 The self consistency of the conversion (resistivity to dopant density and dopant density to resistivity) (see Appendix X1) is within 3% for boron from 0.0001 to 10 000 [omega][dot]cm, (10 to 10 cm ) and within 4.5% for phosphorus from 0.0002 to 4000 [omega][dot]cm (10 to 5 X 10 cm ). This error increases rapidly if the phosphorus conversions are used for densities above 5 X 10 cm .

1.3 These conversions are based upon boron and phosphorus data. They may be extended to other dopants in silicon that have similar activation energies; although the accuracy of conversions for other dopants has not been established, it is expected that the phosphorus data would be satisfactory for use with arsenic and antimony, except when approaching solid solubility. See 5.3.

1.4 These conversions are between resistivity and dopant density and should not be confused with conversions between resistivity and carrier density or with mobility relations.

Note 1-The commonly used conversion between resistivity and dopant density compiled by Irvin (6) is compared with this conversion in Appendix X2. In this compilation, Irvin used the term "impurity concentration" instead of the term "dopant density."

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Keywords

boron; dopant density; phosphorus; resistivity; silicon; ICS Number Code 29.045 (Semiconducting materials)

To find similar documents by ASTM Volume:

10.04 (Electronics; Declarable Substances in Materials; 3D Imaging Systems)

To find similar documents by classification:

29.045 (Semiconducting materials)

This document comes with our free Notification Service, good for the life of the document.

This document is available in either Paper or PDF format.

Document Number

ASTM-F723-99

Revision Level

1999 EDITION

Status

Cancelled

Modification Type

Withdrawn

Publication Date

June 10, 1999

Document Type

Practice

Page Count

15 pages

Committee Number

F01.06