ASTM-E1888 Historical Revision Information
Standard Practice for Acoustic Emission Examination of Pressurized Containers Made of Fiberglass Reinforced Plastic with Balsa Wood Cores

ASTM-E1888 - 2017 EDITION - CURRENT
Show Complete Document History

Document Center Inc. is an authorized dealer of ASTM standards.
The following bibliographic material is provided to assist you with your purchasing decision:

Standard Practice for Acoustic Emission Examination of Pressurized Containers Made of Fiberglass Reinforced Plastic with Balsa Wood Cores
ORDER

Price:

$63.00        

Changes from the previous issue

A redline edition is available for this document, with all changes visible. Ask Document Center Inc. for more information.

Scope

1.1 This practice covers guidelines for acoustic emission (AE) examinations of pressurized containers made of fiberglass reinforced plastic (FRP) with balsa cores. Containers of this type are commonly used on tank trailers for the transport of hazardous chemicals.

1.2 This practice is limited to cylindrical shape containers, 0.5 m [20 in.] to 3 m [120 in.] in diameter, of sandwich construction with balsa wood core and over 30 % glass (by weight) FRP skins. Reinforcing material may be mat, roving, cloth, unidirectional layers, or a combination thereof. There is no restriction with regard to fabrication technique or method of design.

1.3 This practice is limited to containers that are designed for less than 0.520 MPa [75.4 psi] (gage) above static pressure head due to contents.

1.4 This practice does not specify a time interval between examinations for re-qualification of a pressure container.

1.5 This practice is used to determine if a container is suitable for service or if follow-up NDT is needed before that determination can be made.

1.6 Containers that operate with a vacuum are not within the scope of this practice.

1.7 Repair procedures are not within the scope of this practice.

1.8 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.

1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Significance and Use

4.1 This practice does not rely on absolute quantities of AE parameters. It relies on trends of cumulative AE counts that are measured during a specified sequence of loading cycles. This practice includes an example of examination settings and acceptance criteria as a nonmandatory appendix.

FIG. 1 Recommended Features of the Apparatus

Recommended Features of the ApparatusRecommended Features of the Apparatus

4.2 Acoustic emission (AE) counts were used as a measure of AE activity during development of this practice. Cumulative hit duration may be used instead of cumulative counts if a correlation between the two is determined. Several processes can occur within the structure under examination. Some may indicate unacceptable flaws (for example, growing resin cracks, fiber fracture, delamination). Others may produce AE but have no structural significance (for example, rubbing at interfaces). The methodology described in this practice prevents contamination of structurally significant data with emission from insignificant sources.

4.3 Background Noise—Background noise can distort interpretations of AE data and can preclude completion of an examination. Examination personnel should be aware of sources of background noise at the time examinations are conducted. AE examinations should not be conducted until such noise is substantially eliminated.

4.4 Mechanical Background Noise—Mechanical background noise is generally induced by structural contact with the container under examination. Examples are: personnel contact, wind borne sand or rain. Also, leaks at pipe connections may produce background noise.

4.5 Electronic Noise—Electronic noise such as electromagnetic interference (EMI) and radio frequency interference (RFI) can be caused by electric motors, overhead cranes, electrical storms, welders, etc.

4.6 Airborne Background Noise—Airborne background noise can be produced by gas leaks in nearby equipment.

4.7 Accuracy of the results from this practice can be influenced by factors related to setup and calibration of instrumentation, background noise, material properties, and structural characteristics.

Keywords

acoustic emission; balsa core; composite pressure vessel; tank trailer;; ICS Number Code 17.140.20 (Noise emitted by machines and equipment); 23.020.10 (Stationary containers and tanks)

To find similar documents by ASTM Volume:

03.03 (Nondestructive Testing)

To find similar documents by classification:

17.140.20 (Noise emitted by machines and equipment Standards included in this group shall also be included in other groups and/or sub-groups according to their subject)

23.020.10 (Stationary containers and tanks)

This document comes with our free Notification Service, good for the life of the document.

This document is available in either Paper or PDF format.

Document Number

ASTM-E1888/E1888M-17

Revision Level

2017 EDITION

Status

Current

Modification Type

Revision

Publication Date

July 1, 2017

Document Type

Practice

Page Count

9 pages

Committee Number

E07.04