ASTM-D4463 Historical Revision Information
Standard Guide for Metals Free Steam Deactivation of Fresh Fluid Cracking Catalysts

ASTM-D4463 - 1996 R06 EDITION - SUPERSEDED
Show Complete Document History

Document Center Inc. is an authorized dealer of ASTM standards.
The following bibliographic material is provided to assist you with your purchasing decision:

Standard Guide for Metals Free Steam Deactivation of Fresh Fluid Cracking Catalysts
ORDER

Scope

1.1 This guide covers the deactivation of fresh fluid catalytic cracking (FCC) catalyst by hydrothermal treatment prior to the determination of the catalytic cracking activity in the microactivity test (MAT).

1.2 The hydrothermal treatment of fresh FCC catalyst, prior to the MAT, is important because the catalytic activity of the catalyst in its fresh state is an inadequate measure of its true commercial performance. During operation in a commercial cracking unit, the catalyst is deactivated by thermal, hydrothermal and chemical degradation. Therefore, to maintain catalytic activity, fresh catalyst is added (semi) continuously to the cracking unit, to replace catalyst lost through the stack or by withdrawal, or both. Under steady state conditions, the catalyst inventory of the unit is called equilibrium catalyst. This catalyst has an activity level substantially below that of fresh catalyst. Therefore, artificially deactivating a fresh catalyst prior to determination of its cracking activity should provide more meaningful catalyst performance data.

1.3 Due to the large variations in properties among fresh FCC catalyst types as well as between commercial cracking unit designs or operating conditions, or both, no single set of steam deactivation conditions is adequate to artificially simulate the equilibrium catalyst for all purposes.

1.3.1 In addition, there are many other factors that will influence the properties and performance of the equilibrium catalyst. These include, but are not limited to: deposition of heavy metals such as Ni, V, Cu; deposition of light metals such as Na; contamination from attrited refractory linings of vessel walls. Furthermore, commercially derived equilibrium catalyst represents a distribution of catalysts of different ages (from fresh to >300 days). Despite these apparent problems, it is possible to obtain reasonably close agreement between the performances of steam deactivated and equilibrium catalysts. It is also recognized that it is possible to steam deactivate a catalyst so that its properties and performance poorly represent the equilibrium. It is therefore recommended that when assessing the performance of different catalyst types, a common steaming condition be used. Catalyst deactivation by metals deposition is not addressed in this guide.

1.4 This guide offers two approaches to steam deactivate fresh catalysts. The first part provides specific sets of conditions (time, temperature and steam pressure) that can be used as general pre-treatments prior to comparison of fresh FCC catalyst MAT activities (Test Method D 3907) or activities plus selectivities (Test Method D 5154).

1.4.1 The second part provides guidance on how to pretreat catalysts to simulate their deactivation in a specific FCCU and suggests catalyst properties which can be used to judge adequacy of the simulation. This technique is especially useful when examining how different types of catalyst may perform in a specific FCCU, provided no other changes (catalyst addition rate, regenerator temperature, contaminant metals levels, etc.) occur. This approach covers catalyst physical properties that can be used as monitors to indicate the closeness to equilibrium catalyst properties.

1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Significance and Use

In general, steam treatment of FCC catalyst can be used either to compare a series of cracking catalysts at a simulated equilibrium condition or conditions, or to simulate the equilibrium condition of a specific cracking unit and a specific catalyst. This guide gives an example for the first purpose and an approach for the latter purpose.

Keywords

catalysts; cracking; ceactivation; hydrothermal treatment; steam deactivation of fresh fluid cracking catalysts; steam deactivation; ICS Number Code 71.040.30 (Chemical reagents)

To find similar documents by ASTM Volume:

05.05 (Combustion Characteristics; Manufactured Carbon and Graphite Products; Catalysts)

05.06 (Gaseous Fuels; Coal and Coke)

To find similar documents by classification:

71.040.30 (Chemical reagents Including reference materials)

This document comes with our free Notification Service, good for the life of the document.

This document is available in either Paper or PDF format.

Document Number

ASTM-D4463-96(2006)

Revision Level

1996 R06 EDITION

Status

Superseded

Modification Type

Reapproval

Publication Date

Oct. 1, 2006

Document Type

Guide

Page Count

3 pages

Committee Number

D32.04